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OPTIMAL TESTS FOR PARAMETER INSTABILITY IN THE
GENERALIZED METHOD OF MOMENTS FRAMEWORK

By FaLLAW SOWELL

This paper presents optimal tests for parameter instability in the GMM framework.
The new tests include tests that are optimal for both one-sided and two-sided alternatives.
One of the optimal tests for two-sided alternatives is the GMM generalization of the test
presented in Andrews and Ploberger (1994) for the likelihood framework. The new tests
include a class of optimal tests that direct the test’s power to specific locations in the
sample. One of these optimal tests has the attractive feature of a normal distribution
under the null hypothesis.

KEYwORDs: Optimal test for parameter instability, Brownian motion, Brownian bridge,
stochastic differential equation, Neyman-Pearson lemma, Radon-Nikodym derivative.

THIS PAPER PRESENTS OPTIMAL TESTS for parameter instability in the GMM
framework. The locally most powerful test is presented for any parameter
instability alternative that can be written as the limit of simple functions. When
the magnitude and /or location of the parameter instability is unknown, the test
with the greatest weighted average power is presented. Two qualifications
should be noted for the optimality results. First, optimality is only an asymptotic
result. GMM estimation requires general distributional assumptions. This level
of generality requires the use of the asymptotic distribution for optimality
results. Second, the optimality is conditional on the selected moment conditions.

The derivation of the new tests relies on the weak convergence of the
stochastic processes that compose the GMM objective function. A continuous
functional (mapping) from the stochastic processes that compose the GMM
objective function gives a test statistic. The functional applied to the limiting
processes characterizes the test statistics’ distributions under the null and under
local alternatives. These general results imply a continuum of optimal tests.
Specific tests are presented for one-sided and two-sided alternatives that are
linear in the parameters. The new tests include a class of optimal tests that
direct the test’s power to specific locations in the sample. These new tests
present a collection of information to help judge the adequacy of fitted models.

The research closest to this paper is the path breaking work in Andrews and
Ploberger (1994), hereafter denoted AP. The major differences are that AP only
presented optimal tests for a special weighting distribution, AP only considered
the likelihood function framework, and the proof technique in AP cannot be
extended to the GMM framework. AP uses the Neyman-Pearson lemma with

! Helpful discussions were provided by Don Andrews, Steve Shreve, and Stan Zin. Helpful
comments were provided by a co-editor, three anonymous referees, and seminar participants at the
University of Virginia, the University of Washington—Seattle, Carnegie Mellon University, Yale
University, the Research Triangle Econometrics group, the University of California at San Diego,
and Cal Tech.
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1086 FALLAW SOWELL

the density of the observed series. This gives the most powerful test for each
finite sample for the local alternative. This method of proof cannot be general-
ized to the GMM framework because in a finite sample there is no density. To
address the more general class of models an alternative method of proof is
required. The weak convergence limits of the normalized partial sums of the
sample moments under the null and local alternative hypotheses are derived.
These imply two measures on the space of realizations for the normalized
partial sums of the sample moments. The Neyman-Pearson lemma is then
generalized to the problem of testing between these two measures. The result is
a functional that implies the asymptotically most powerful test against local
alternatives in the GMM framework.

Previous results on parameter instability tests in the GMM framework (e.g.,
Andrews and Fair (1988), Hoffman and Pagan (1989), Ghysels and Hall (1990),
and Hansen (1990)) have not considered issues of optimality. Andrews (1993)
does present an optimality result for the sup test. However as noted in Andrews
(1993) the result is very weak, only concerns power as the size of the test goes to
zero, and is not indicative of finite sample performance. Optimal tests for
structural stability have been limited to the likelihood function framework. This
work includes Davis (1977, 1987), Nyblom (1989), King and Shively (1993), and
AP. The questions considered in Davis (1977, 1987) and in AP are special cases
of the question answered in this paper. Stock (1990) used continuous mappings
to unify the asymptotic theory under the null for a collection of unit root tests.
Though some of the same tools are used, the current paper assumes stationarity.

The paper is organized as follows. The next section defines the class of
models, presents the main asymptotic results concerning the weak convergence
of stochastic processes created from sample moments, and presents a general
framework to generate specification tests in the GMM framework. Section 2
uses the asymptotic results and the general framework to derive several new
optimal tests for structural breaks in the GMM framework. Section 3 is a
summary and presents directions for future research.

The following notation will be used in this paper: b(sXb°(s)) defined on
5 €[0,1] denotes the univariate standard Brownian motion (bridge) process,
B/(sXB;(s)) denotes the j-dimensional vectors of independent standard
Brownian motions (bridges), = denotes weak convergence, —” denotes con-
vergence in probability, ||*|| denotes the Euclidian norm, and [e] is the greatest
integer function.

1. MODEL AND ASYMPTOTIC RESULTS

The starting point for the results in this paper are the consistency of the
GMM estimator and a multivariate invariance principle that applies to the
sample moments. The following are not the weakest assumptions possible.
Rather, these assumptions are relatively straightforward to verify and general
enough to be of interest. The assumptions are strong enough to obtain the
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limiting distribution under both the null hypothesis and under sequences of
local alternatives.

ASSUMPTION 1: For each T, the sequence {x, 1} consists of the first T elements of
an r-dimensional stationary and ergodic stochastic process {x, r:t=1,2,...}.

For notational simplicity, x, will be used to denote x, ;.

ASSUMPTION 2: The parameter space @ is a compact subset of R*.

To allow the calculation of power against local alternatives, a sequence of
alternatives will be considered. This class of alternatives allows for structural
changes.

ASSUMPTION 3:

t
b 7T7 _
8\m T
VT
where g(n, m, s), for s €[0,1], is a k-dimensional function that can be expressed as

the uniform limit of step functions, n€R', m€ R’ such that 0 <, < 7w, < -+ <
m; <1, and 0, is in the interior of ©.

Bt,T = 00 +

A standard result in analysis, e.g. Kolmogorov and Fomin (1961), shows that
g(n,,s) can be any measurable function; hence alternatives that imply multi-
ple jumps or gradual shifts satisfy this assumption. If an element of g(n, =, s) is
zero the alternative does not involve the corresponding parameter in 6.
Andrews and Fair (1988) refer to an alternative where none of the element of
g(n,,s) are zero as a pure structural change and where some of the elements
are zero as a partial structural change. The parameter 7 denotes the times of
the structural changes as fractions of the sample size. The vector n parameter-
izes the function that defines the local alternatives. Note that the dimension of
7 is different from the dimension of 6, the structural parameters. For example,
if the alternative of interest has n different jumps in the value of a single
parameter, then j =i =n. There would be one parameter in 1 for each change
in the structural parameter’s value. Similarly, if the alternative of interest is a
one-time jump in the values of each of the structural parameters, then j=i==k.

Functions of the observed data summarize the information in the model. This
model may be suggested by economic theory, e.g. Euler equations, or perhaps an
estimation problem, e.g. the score functions from maximum likelihood. The
~ functions are of the form f(x,, 8), where f: R” X R¥ - R™. The relevant theory
will imply the functions satisfy Ef(x,, 6,) = 0. The sample estimate of Ef(x,, )
is the function F,;(8) =(1/T)LT] f(x,, 6) evaluated at s =1, where s € [0,1].
For notational simplicity, F;(6) will be used to denote F,;(8). The GMM
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estimator of 6 is selected to make an estimate of Ef(x,, ) close to the zero
vector in some metric. A sequence of weighting matrices, {Wy}, determines this
metric. The GMM estimator, 0,, is defined as a sequence of random vectors
that solves

6, = argmin F,(6)'W,F.(6).
0

The asymptotic variance of F;(6,) is defined by 3 =lim; _, ., E[TF;(6,)F;(6,)'].
The probability limit of the gradient of the sample moments will be denoted
M =plim;_,(dF;(8,)/ 0"0) This gradient is often normalized by the symmetric
matrix square root of 3. This matrix will be denoted M = 3~'/2M. Below, M,
will be used to denote a consistent estimate of M.

ASSUMPTION 4: The matrix 3 is positive definite and the matrix M has full
column rank.

An identification assumption is required to assure that the sequence of GMM
estimator has a unique limit.

ASSUMPTION 5: limy ,,, EF;(6) = 0, only when 6= 6,.

The functions of the data must satisfy smoothness and boundedness regularity
conditions.

ASSUMPTION 6: f(x, 0) is continuously partially differentiable in 0 in a neighbor-
hood of 6, for every 6 € @. The functions f(x, 0) and (3f(x, 6)/30) are measur-
able functions of x for each 6€ @* and Esup,.ge-lldf(x,,0)/d0| < .
Ef(x,,0,) =0, Ef(x,,0,) f(x,,6,) <, and sup, e lf(x,, Ol <o for all t=
1,...,Tand T=1,2,.... Each element of f(x,, 0, 1) is uniformly square integrable,
forallt=1,...,Tand T=1,2,....

Only optimal GMM is considered, i.e., attention is restricted to efficient
GMM estimators. This is achieved by restricting the choice of the weighting
matrix in the next assumption.

ASSUMPTION 7: The sequence of positive definite weighting matrices {Wr)7_,
converge in probability to 3.

The symmetric matrix square root of the weighting matrix will be denoted
Wi /2. This assumption holds for consistent estimates of the spectral density at
frequency zero. Several potential estimators exist. See Hannan (1970, pp.
273-288). Satisfying Assumption 7 typically requires a two-step estimation
procedure. See Hansen (1982).

The next assumption imposes restrictions on the amount of heteroskedasticity
and autocorrelation allowed in the observed series. See Phillips and Durlauf
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(1986) for the definitions of strong and uniform mixing for multivariate pro-
cesses, which generalizes the univariate work of McLeish (1975).

ASSUMPTION 8: Either

1. {x,} is strong mixing with strong mixing coefficients {a(n)}, L5 _; a(n)! =%/ # <
with B> 2, or

2. {x,} is uniform mixing with uniform mixing -coefficients {p(n)},
T o)V E < oo with B>2,
and the individual elements of f(x,,0,;) have the finite absolute moment
Elfx,, 6, NP < fori=1,...,m.

These assumptions define the class of models for which specification tests will
be defined. The asymptotic results needed for optimal testing are the weak
convergence of the partial sums of the sample moments under the null and
alternative hypotheses. Theorem 1 gives the convergence under the alternative
and Corollary 1 gives the convergence under the null.

THEOREM 1: If Assumptions 1-8 are satisfied, then
W VTWYE(6r)
—_ e — =1 —_
= B,,(s) = sM(M'M) " M'B,, () — M [ y(n,7,v)dv,
0
where y(n, w,v) =g(n, m,v) — [} g(n, m,r)dr.

The proofs are presented in the Appendices.

The null hypothesis for specification tests is that the model is correctly
specified and the parameters of the model do not change over time. This null
hypothesis is characterized in the following assumption.

ASSUMPTION 3': 0, = 0, Vt, T and 0, is in the interior of ©.

The special structure of the stochastic processes under the null hypothesis is
presented in the following corollary.

COROLLARY 1: If Assumptions 1-2, Assumption 3', and Assumptions 4-8 are
satisfied, then there exists an orthonormal matrix C such that

B; (s)
Bm—k(S)

where B;(s) and B,,_,(s) are independent and M(M'M)~'M' = C' AC where
CC'=1, and

A=k O].
0 0

C‘/_TWTI/ZEST(éT) =
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This corollary shows that under the null hypothesis the limiting continuous
stochastic processes are linear combinations of & Brownian bridges, one for
each parameter estimated, and m — k Brownian motions, one for each over-
identifying restriction.

The normalized partial sum of the sample moments converge to a stochastic
process, Z(s). Corollary 1 shows that if there is no structural change (i.e., under
the null hypothesis), the limiting stochastic processes are linear combinations of
independent standard Brownian bridges and standard Brownian motions.
Theorem 1 presents the asymptotic behavior under local alternatives of parame-
ter instability. These local alternatives only add drift to the Brownian bridges.
The Brownian motions are not affected. The structure of the drift is similar to
the structure of the Brownian bridges. In differential form the drift can be seen
as the partial sum of deviations from the mean for the function that defined the
local alternatives

y(n,m,s)ds =g(n,m,s)ds — {flg(n,w,r) dr}ds.
0

Theorem 1 and Corollary 1 can be used as the foundation for a general
approach to asymptotic theory for specification testing in the GMM framework.
To form a specification test the following steps can be followed. .

1. Use the data to construct a stochastic process, e.g. VT W;/2F, (6,), that
asymptotically approaches the limiting continuous stochastic process in equation
.

2. Choose a mapping H from 7T the set of continuous functionals? from the
space® D[0,1]" to R such that for every a €(0,1) there exists a k_, with

|k,| <o, such that
B; (s)
Bm_k(S)]) Ska} -

3. A test statistic is formed by applying the continuous mapping of step 2 to
the stochastic process constructed in step 1, e.g. HW/T W/ 2F,;(6,)).

4. The continuous mapping theorem and Corollary 1 can be used to show that
the distribution under the null can be characterized as equivalent to the

distribution of
B (s)
B m—k ( s ) '

2 Continuous with respect to the uniform metric.
3 The space D[0,1]™ is the m product space of DI0,1], the space of functions on [0,1] that are
right-continuous and have left limits (Billingsley (1968, Chapter 3)).

a?

Pr{H C’

H|C'
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5. The continuous mapping theorem and Theorem 1 can be used to show that
the distribution of the test statistic under the local alternatives in Assumption 3
can be characterized as equivalent to the distribution of

Hlc' B; (s) - Clﬁf(; 'Y(n, a,v)dv
Bm-k(s)

where C, is the matrix of the first j rows of C which span the same space as the
columns of M.

This can be considered a generic approach to asymptotic theory for specifica-
tion tests in the GMM framework. A functional in 7" characterizes a test
statistic. All that is needed to define a specification test is the functional. This
approach is followed in the remainder of this paper. Attention is limited to the
presentation of functionals.

2. OPTIMAL TESTS FOR STRUCTURAL CHANGE

Each functional in 7" generates a statistical test. A natural question is which
of these tests will have power against a particular structural break (alternative).
This section uses the approach of the previous section in the derivation of
optimal tests for structural breaks in the GMM framework. A functional will
imply the optimal test for the structural break given by the function g(n,w, s).

Under the null hypothesis of structural stability CZ(s) will be a draw from
C[0,1]™ using the measure defined by the stochastic differential equation

dB; (s) ]

2) dCZ(s) = 4B, _(s)

The alternative hypothesis of structural instability embodied in the local alterna-
tives imply CZ(s) will be a draw from C[0, 1] using the measure defined by the
stochastic differential equation

3) dCZ(s) = —CMy(n,m,s)ds +

dB; (s)
dB,,_,(s) |’

Asymptotically, testing between the null hypothesis of structural stability and
the local alternative is equivalent to testing between two measures defined on
the space C[0,1]". Because the last m — k rows of C are orthogonal to M, the
measures implied by the alternative and the null can only differ with respect to
the Brownian bridges. In general, the alternative will place restrictions over j
Brownian bridges.

To address issues of power for this asymptotic testing problem a Neyman-
Pearson approach can be applied. The standard Neyman-Pearson lemma
(Lehmann (1959, p. 65)) gives the form of the most powerful test when testing
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between two distributions (i.e., probability measures) that possess densities. For
testing problems where the competing distributions do not have densities, the
next theorem uses the Radon-Nikodym derivative to generalize the ratio of the
densities in the standard Neyman-Pearson lemma.

THEOREM 2 (Neyman-Pearson): Let X(s) be a draw from the sample space
C[0,1]™. If the null hypothesis implies the measure w, and the alternative hypothe-
sis implies the measure ,, and if w, is absolutely continuous with respect to .,
then the most powerful level o test will have a critical region, % .., defined by

d

(a) —M—I-(X(s))zk foreach X(s)€@,,
dpg
dp,

(b) —(X(s)) <k foreach X(s)¢&%,, and

dpg

where (d . /duy)(X(s)) is the Radon-Nikodym derivative of w, with respect to
evaluated at X(s).

Theorem 2 shows that the Radon-Nikodym derivative is the functional from
C[0,1]™ that gives the most powerful test. Hence optimal testing requires the
Radon-Nikodym derivative of the measure implied by the local alternative with
respect to the measure implied by the null. The general form of this Radon-
Nikodym derivative is given in the following theorem.

THEOREM 3: Let w, denote the probability measure over C[0,1]™ implied by the
stochastic differential equation

dX(s) =

dB; (s)
dB,,_,(s)

and let w, denote the probability measure over C[0,1]" defined by the stochastic
differential equation

dX(s) =v(s)ds +

dB;, (s)
dB,,_,(s)

where v(s) =[v,(s) v,(s)...v,(s)]' is a vector of functions defined on the unit
.interval that satisfy

1. fg v(s)?ds <o fori=1,...,m, and

2. lim, ., (fg v,(s)ds)/(1 —t) <o fori=1,...,k.
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The Radon-Nikodym derivative of w, with respect to p is

dpy _ 1 , 1 ,
E;(X(S)) = exp{fo v(s)' dX(s) — 5 j(; v(s) v(s)ds}

where X(s) is a realization (or trajectory), not a random variable.

Theorems 1 to 3 immediately give the functional that implies the asymptoti-
cally most powerful test against the local alternatives given in Assumption 3.

COROLLARY 2: The most powerful asymptotic test for the local alternative given
in Assumption 3 rejects the null hypothesis of no structural break if {(n,m) =k,
where

((n,m) = eXp{ - fol y(n,m,5)'M' dZ(s)

1

1 —
_‘2‘1; Y(W,W,S)'M’My(n,w,s)ds}

and k,, is defined so that the test has size a.

This corollary gives the functional that produces the most powerful level o
test for the point alternative implied by n and 7.

For composite alternatives the optimal tests are defined for weighted average
power criteria functions. The optimal tests depend on the choice of the weight-
ing densities defined over the possible alternatives. The weighting density used
in AP, which is a generalization of that used in Wald (1943), is an example of
this approach to deriving optimal tests. Using the Bayesian interpretation given
in Andrews (1994), if the weighting densities are viewed as prior distributions
over the space of local alternatives, the optimal test statistics can be interpreted
as posterior odds ratios. The next corollary gives the functionals that imply the
optimal test for composite alternatives.

COROLLARY 3: Let J(m) be a weighting distribution function on m and let
R(n, ) be a weighting distribution function on m for every m in the support of J(ir).
The asymptotic test with the greatest weighted average power rejects the null
hypothesis of no structural break if [[{(n,7)dR(n,m)dI(7)=k,, where k, is
defined so the test has size o.

This corollary gives the functional that implies the test that will asymptotically
have the greatest weighted average power conditional on the weighting func-
tions. The null and alternative distributions of the test statistics implied by these
functionals can be characterized using Theorem 1 and Corollary 1. Appendix 5
gives computationally efficient forms of the terms that are needed to evaluate
the test statistics and calculate critical values.
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Corollary 3 implies a continuum of optimal tests for parameter instability.
These tests differ in terms of either the alternatives considered or the weighting
distributions used. The next two subsections derive optimal tests using Corollary
3. The examples considered are one-sided and two-sided alternatives that are
linear in the parameters and weighting distributions created from normal
distributions. The final subsection considers the leading case of this class of
alternatives: the one-time structural break alternative.

2.1 Alternatives that are Linear in the Parameters

Consider alternatives that are linear in the parameters, i.e. gy, m,s)=
D(mr, s)n, where D(m,s) is a k X i matrix that does not depend on 7. Define
A(m) = — ¢ D(m,s)'M' dZ(s) and

V(r) = j(;l{ (j(;lD(w,r)dr) —D(w,s)]

XM'MI:(/ID(W, r)dr) —D(w,s)]}ds.

0

From Corollary 3 the optimal test statistic is implied by the functional*
[ [exotn’ AGm) = ' V(a)m)dR(n, m)ds ()

where S is the support J(m).

The distinction between one-sided and two-sided alternatives is achieved by
different weighting distributions for R(n, 7). In this section these distributions
will be constructed from an i-dimensional multivariate normal with zero mean
and variance U(7). For two-sided alternatives the entire density is used and the
optimal functional simplifies to

U() ™' 1/2

78 =
V() + U(r) ' |/2

S

Xexp{%A(w)'(V(ﬂ') +U(w)” 1)_1 A(W)}:I di().

For one-sided alternatives the weighting distribution will be constructed by
normalizing the normal density restricted to the positive orthant of %’ and the
optimal functional simplifies to

05 — 2 |U(m) ™"
“J; V() + Uar) " [/2

—1y-1
exp{34(m)' (V(m) + U(m) ™) A(m))

X DO((V () + U(w)_l)_l/zA(w))}dJ(w)

“Note [d[ /3 D(rr,r)dr) M' dZ(s) = 0 because the integrand does not depend on s and the GMM
first order conditions.
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where ®@(e) is the i-dimensional standard normal cumulative distribution
function and (V(7r) + U(ar)~1)~!/2 is the symmetric matrix square root.

The TS and the OS functionals can both be thought of as weighted averages
of the same function. The TS functional rejects the null of parameter stability
when the stochastic process (V(wr) + U(wr)~1)"1/24(7r) travels too far for too
long from the zero vector in #'. The TS functional assigns the same weight
regardless of the direction of the deviation. The OS functional rejects the null
hypothesis in favor of the alternative of an increase in a parameter value if the
stochastic process travels too far for too long in the direction of the positive
orthant in #'. Using the i-dimensional cumulative normal distribution function,
the OS statistic assigns higher weight to deviation in the direction of the positive
orthant in %’ and lower weight to deviation in the direction of the negative
orthant in Z'.

For both functionals, 7S and OS, the first term of the integrands is composed
of a constant and a ratio of determinants. These terms do not depend on the
realization (i.e., the data). Therefore, without loss of generality the first term can
be absorbed into the weighting distribution J(7r) by simply redefining this
weighting distribution. These redefinitions will be used in the remainder of this
section.

To control the relative weights assigned to different alternatives, the variance
of the normal weighting distribution will be restricted to the form U(w) =
{A+HQO(m) —V(m)}~! where Q(w) is an i Xi symmetric positive definite
matrix and ¢ is a nonnegative scalar. The matrix Q(7) needs to be restricted so
that Q(w) — V(ar) is always positive semidefinite. When Q(7)=V(w) this
reduces to the limit of the weighting matrix used in AP for the likelihood
function framework. The parameter ¢ controls the weight assigned to different
alternatives. Larger (smaller) values of ¢ assign more weight to alternatives
further (nearer) from (to) the null. The next subsection demonstrates how Q(ar)
can be used to control the relative weights assigned to different locations in the
sample. This variance implies the functionals

1 ¢ _ . -
TSC=Lexp{—2- mA(w) A(w)}dl(w) and

1 ¢ . - . c .
OSC = ];exp{z T;—CA(W) A('TT)}@( )( m A(W))d’(ﬂ)

where A(w) = Q(w)~'/2A(s) and Q(7)!/? is the symmetric matrix square root.

For a special case of the situation considered here, Andrews, Lee, and
Ploberger (1993) reported that the power and size properties of their test
statistic changed very slowly with changes in the value of c. Following their
conclusions the general structure of the functional will be investigated by
looking at the tests implied by the extreme values of c. As ¢ increases more
weight is assigned to alternatives further from the null hypothesis and the
functionals converge to TS, = lim,_, . TS, = [; exp{34(7)' A(m)}dI(w) and
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0S,,=1lim, ., OS, = [; exp{iA(7) A(w P D(A(m))dI (). As ¢ decreases more
weight is assigned to alternatives closer to the null hypothesis and the normal-
ized functionals converge to

TS, — 1 L
TS, = lim 2( )=fA(7r)’A(7r)dI(7r) and
cl0 C M

. 0s, 1
0S,= lim (—2/~1V2m) -
/e L0 Ve

where j is the vector of i ones.

/s j'A(m)dI ()

2.2. Optimal Tests of One-time Structural Change

A special case of the linear in the parameters alternative is the one-time
structural change with the location of the break unknown. Different weighting
distributions imply different optimal tests for this simple alternative. A class of
weighting distributions is introduced that allows the researcher to focus the
tests’ power on different locations of the sample. This is achieved by using the
matrix function

Q,(m) =M'M(m(1 — m))**

in the distributions introduced in the previous subsection. The functionals for
this alternative and weighting distribution are

TSw,a=[gexp{%Z-a(ﬂ')’Z~a(7r))dI(7r),

0S8, ,= f exp{3Z,(m) Z (m)} x @D(Z,(m))dI (),
S

TSy,.= [ Z,(w) Z,(m)dI(w), and
S

08,0 = [ J'Zo(m)dI (),
S
where

3} G z(m)
Z(m)= =
(r(1—m))

When 0 <a the integrands are not defined for values of 7 at the endpoint of
the interval [0, 1]. This requires restricting the support of J(=), S, to a subset of
(0,1). For a < 0 the integrands are defined for all values of 7 and it is possible
for S =[0,1].

The term 1/(w(1 — 7))* is a weighting function. For different values of a,
more power is directed to a particular location as the function assigns relatively
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more weight to that location. For positive values of a the weight function has a
valley shape and assigns relatively more weight to the values near the endpoints
of the sample. For negative values of a the weight function has a hill shape and
assigns relatively more weight to the middle of the sample.

The asymptotic distributions of these statistics under both the null and the
local alternative are easily characterized using Theorem 1 and Corollary 1.
Under the null hypothesis of no structural breaks the test statistics have the
following asymptotic distributions:

TS.. .~ jsexp{(l/z)B;(w)’B}’(w)/(w(l =) }di(m),
TS, , ~* fsB; (w)'B (m) /(w1 = m))** di (),

08, , ~* js [exp{(l /2)B; () By () /(ar(1 = m))*)
X fD(f)(B}’ (m)/(7w(1 - 17))“)] dJ(m), and
0S,,, ~* fsf'B;’ (m) /(1 = w))* di ().

Critical values for these distributions can be calculated with the same simulation
method used in AP. For some values of g, tables of critical values have already
been calculated for J(wr), a uniform distribution. AP gives tables of critical
values for the asymptotic distributions for the test statistics T. So,1,2 and
log(7S.,,; ,,). Nyblom (1989) gives tables of critical values for the asymptotic
distributions for the statistic TS,,. The critical values for the asymptotic
distributions for the statistics TS, o and log(OSw,O) are reported in Table 1. The
fact that [§ b°(s)ds ~ N(0,1,/12) implies that under the null hypothesis of no
structural changes the test statistic OS, , converges to a draw from N(0,j/12).

In applied work the value of a can be selected to focus attention on the most
relevant alternatives. The tests for a = 0 imply the uniform weighting function
for all locations and these statistics are recommended for the situation with no
prior knowledge of the location of the break. Note that this is the largest value
of a for which the integrand is defined over the entire unit interval. So the
support of the weighting distribution J(7) can be the entire unit interval. The
TS, ,, statistic is the GMM generalization of the LM-exp statistic introduced
in AP for the likelihood function framework. This is just one of the continuum
of test statistics 7S, , for a €%. Relative to the a =0 tests, the a =1/2 tests
will have lower power to break near the middle of the sample but will have more
power for alternatives with breaks near the endpoints. Of course if the location
of the structural change can be restricted this information should be incorpo-
rated to obtain maximum power.
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TABLE 1
THE CRITICAL VALUES FOR DISTRIBUTIONS
j:exp{—aigl;i(s—)}ds log(j:exp{w}df”)(&’,(s))ds)
a a
p 0.10 0.05 0.01 0.10 0.05 0.01
1 1.21291 1.29981 1.54157 —0.3005 -0.1778 0.0978
2 1.40251 1.53357 1.90498 —0.7945 —0.6156 —0.2625
3 1.60907 1.78046 2.27492 —-1.3104 —-1.1110 —-0.6774
4 1.83800 2.07437 2.71417 —1.8585 —1.6135 —-1.1138
5 2.09766 2.38159 3.17508 —-2.3935 —2.1230 —1.5666
6 2.38725 2.73231 3.74558 —2.9560 —2.6608 —2.0618
7 2.72378 3.15941 4.46667 —3.5216 -3.2019 —2.5634
8 3.09690 3.63121 5.13549 —4.0803 —3.7341 —3.0188
9 3.53434 4.20261 6.18840 —4.6379 —4.2646 —3.5295
10 4.02253 4.83677 7.09889 —5.2149 —4.8209 —4.0206

Notes: The critical values are based on 40,000 realizations. Each realization was constructed by approximating the
integrals with the average over the discrete grid of 4,000 equal intervals on [0,1]. For each realization the integrands were
calculated by simulating the p-dimensional Brownian bridge with the partial sums of the deviations from mean for 4,000
normal random variables with variance (4,000)7!.

The functional OS,, implies an attractive univariate test for parameter
stability. This test for parameter instability of a single parameter 6; in the GMM
framework is

. VI2Ze;MyWy LI (T + 1 - 1)f,(67)
TVT e;M’TWTMTei

1

where e; is the ith column of the k& dimensional identity matrix. This test can be
written as a weighted average of the Sequence of LM ¢ tests for the one-time
break at all possible breaks. This test statistic has an optimality property, is easy
to calculate, and has a standard normal distribution under the null hypothesis.
This test has a particularly simple form for the linear regression model. For the
linear regression model y, = ©¥_, B;x,; + € with the alternative hypothesis of a
one-time break in the parameter B;, the optimal test statistic is

%V T (T+1—t\
) T X1i€

oA T 2
UT\/Zt=1 Xy t=1
2

where €, are the OLS residuals and ¢ is a consistent estimate of

1 T
lim var| —= AR
T- o ‘/T tgl t
Large negative (positive) values suggest a one-time increase (decrease) in the
parameter values during the sample. This test is optimal for the one-time

structural break alternative; however Theorem 1 can be used to establish the
larger class of alternatives for which this test has power.

St;

14
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3. SUMMARY AND FUTURE RESEARCH

This paper derives optimal tests for parameter instability in the GMM
framework. As a demonstration of the usefulness of the theory, optimal tests
were derived for one-sided and two-sided linear in the parameters alternatives.
For the one-time structural change alternative these optimal tests imply a class
of tests that permit a researcher to direct the power of the test to specific
locations in the sample. Though these specific tests are optimal for the one-time
structural break alternative, Theorem 1 can be used to demonstrate that they
are consistent for a larger class of alternatives.

The tests TS, ,, TSy ,, OS, ,, and OS, , present a collection of information
to help judge the adequacy of a fitted model. Applied researchers should select
the appropriate test for their alternative: one-sided versus two-sided alternatives
and alternatives that are “close to” versus “far from” the null. The univariate
statistics are a collection of specification tests to judge the stability of an
estimated model. These single parameter tests give the researcher an idea of
which of the parameters are involved in a structural break. The multivariate
statistics will have more power against alternatives which involve more than one
parameter. Though these multiple parameter tests do not give the researcher an
indication of which parameters are involved in the structural break. The multi-
variate and univariate tests should be viewed as complementary, comparable to
the relationship between the F statistic and the ¢ statistics for a linear regres-
sion model.

Several issues remain to be addressed including the tabulation of critical
values for the different asymptotic distributions, the adequacy of the asymptotic
approximation to the small sample distributions (see Diebold and Chen (1996)),
and the implications of different weighting functions and how they affect the
optimal tests.

The techniques used in this paper should generalize to additional testing
problems. It should be possible to address a larger class of alternatives that
includes stochastic alternatives such as those considered in Nyblom (1989) and
King and Shively (1993). Also, this approach should generalize to models with
nonstationary series.

Each test presented in this paper can be thought of as one element of an
equivalence class of asymptotically equivalent tests. These asymptotically equiva-
lent tests include Wald and likelihood ratio versions of the Lagrange multiplier
tests presented in this paper. An open question is which of the tests in the
equivalence class should be used in practice. This question can be addressed in
terms of ease of calculation and the accuracy of the asymptotic approximations.

Grad. School of Industrial Administration, Carnegie Mellon University, Pittsburgh,
PA 15213-3890, U.S.A.

Manuscript received August, 1993; final revision received October, 1995.
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APPENDIX 1
PROOF> OF THEOREM 1

The convergence, 6, — 6y, results from the identification assumption (Assumption 5) and the
uniform convergence of Fr(6) to lim; EF;(0). The uniform convergence is established by verifying
Assumptions Al, B1, and A5 in Andrews (1987). Al follows from Assumption 2. Bl follows from
Assumption 8. A5 follows from Assumption 2 and Assumption 6.

Phillips and Durlauf (1986) present a multivariate generalization of the univariate results in
MecLeish (1975). Assumptions 1, 4, and 8 of this paper imply the assumptions of Corollary 2.2 in
Phillips and Durlauf (1986); hence, the sample moments evaluated at 0, r satisfy the multivariate
invariance principle.

1 [sT]
v Wi/2 Y f(x,,0, 1) = B,(s).
t=1

To reduce notation define f,(6) =f(x,,0) and g(s) =g(n, 7, s).
Expand f£,(6) about 6, ; and evaluate the expansion at 6,:

of,(6, 1)

fl(00)=ft(gt,T) 90

(00 - OI,T)
t
af (6, 1) g(?)
39 VT

where 0,7 =162...6%] and %) =ky.60) +(1 — k{368 for some k() €[0,1] and each ¢=
L[sT1and i'= 1 ., k. Because ; is consistent for 6o, 0, =7 0,.
Now sum these terms from 1 to [sT'] and divide by T to get

1 LT 1 1 of(6,7) (¢
Frto) =7 L4000 - 7<= 2 (1)

Multiply both sides by VT W}/? and let T — « to get

=ft(01,T) -

Tl

1 LTI

VTW. 1/2 ):f,(0,1)=>B (s)
and

11 BTV oro, )
VTW? — — Mg

i N —1/2 s i s
T VT ,=Zl P (T) Py Mj(;g(v)dv Mj;g(v)dv
which gives
4) ﬁWTl/zFJT(OO)=Bm(s)—1l71fsg(1],7'r,u)dv.
0

Expand F,7(6) about 8, and evaluate the expansion at 6;:

. OF+ (8, 1) .
®) Fir(bp) = Fir(8) + —212 (67 - )

°1 thank Steve Stern and Hide Ichimura for pointing out a mistake in an earlier version of this
proof.
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where 6, 7 =[6%.. 3("7?] and 6% = k0P + (1 — - k6§ for some k(P €[0,1] and every s €[0,1]

and i=1,..., k. Because OT is consistent for 6,, 8, 7 =7 6,.
Calculate an alternative form for (0, 6y). Expand f,(8) about 6, r and evaluate the expansion

at OT

n f (8, 1) .
fi(67) =£(6, 7) + i#‘(er_ 6,1)

t
o+ B0 5 g ) ——g(F)
AN 90 T 0 90 \/7
where 8, 7 =[0%...9%] and 6%} =k{}6() + (1 —k{(})6Y for some k(}€[0,1] and each ¢=
1 T and i=1,...,k. Because 0 is consistent for 6, E,J —70,.

Sum these terms from 1 to T and divide by T to get

o I of(6,1) . L) (0 ) (¢
R =1 Lo+ £ L0 -0 - 1 o ¥ O0,(1)

t=1

Multiply both sides by
OFr(67)
I w,.
a0

Assumptions 4 and 7 imply that there exists a 7* such that for all 7* < T

o | oFzéry 1] af,(o,,) R by
6) (67— 6,) = [T =Z 0

1 T «9f,(0,r) t
o(7)]

[—— IR

This equality holds because with probability one the first order condition

9Fr(8r)

Fr(07)' Wy o

will be satisfied and
OF(67) w 1 i af,(8, 1)
8 T & e

SPM'S'M

where 3 is nonsingular and M is of full rank.
Substitute (6) into (5) to get

. OF,-(8, 1) [ 9F(6;) T (0 )
Fip(Br) = Fp(6) + —7 T(mT ; Z - ]
aF(67) 1 X 1 I af,(o,,) t
% Wr[‘?Eﬂ“’ﬂ’ T A W (?)
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Multiply both sides by T W;/2. The convergence of the first term on the right-hand side is given by
(4). The remaining terms converge as:

/2% w2

= A - -1 A~
, 9Fr(6, 1) | 9Fr(67) - 1 ZT: 3f,(6, 1) oFr(6r)'
9 39 TS 39

—>Ps1t71(1l7'1t7)_11l7',

\/_Wl/2 Zf,(e,T)=B ),

T
‘9ft(01 T) t 1
12 - ps-1/2
VT W} T‘/_; T)_)Z Mjog(v)dv
— r1
=M [ g(v)dv.
L8
These results immediately imply (1).
APPENDIX 2

PROOF OF COROLLARY 1
Under the null hypothesis of no structural breaks, i.e., g(n,,t/T) =0, Theorem 1 implies
%) VT WL/ F.p(by) = B, (s) — sM(M'M) ™ M'B,(1).
The m X m matrix M(M'M)~'M' has rank k and is idempotent; hence m — k of its eigenvalues
are 0 and the remaining k eigenvalues are each 1. This matrix is symmetric with real elements so it
has a spectral decomposition M(M'M)~'M' = C' AC where CC' =1, and A is a diagonal matrix

of the eigenvalues of M(M'M)~'M'. Without loss of generality, select a spectral decomposition
where the first k-eigenvalues are 1 and the last m — k are 0,

A= 0
0 0
Substitute the spectral decomposition into equation (7) and multiply both sides by C:

CVTWA/?F,(6;) = CB,,(s) —s[lk 0

. O]CB,,,(I).

Because C is orthonormal CB,,(s) is also a multivariate standard Brownian motion process. Hence

C\/TWTVZF,T(éT)=>Bm(s)—s[gc 8]3'"(1)

B; (s) ]

Bm—k(s)

where B (s) and B,, _,(s) are independent.
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APPENDIX 3
PROOF OF THEOREM 2

The proof requires showing that the power for the critical region %, is greater than or equal to
the power for any other critical region. Let & be any other critical region of size « for testing
Hy: o versus Hy: py.

I R A e Jong, 1™ Jnge;
- %‘m%‘d“l_f%%:d#l
>k -fg ncgcd”‘o - /gngf d”O]
=k _fsz’,, R S S e dﬂo]

=k _—,;g* dpy — fgdﬂ.o]
=kla—al.

The first and fourth equalities occur because &, = (& N F) U (Z, N &°). The inequality holds
because for the optimal test

d
S x(s) =k
dpg

for all X(s) € ¥, and hence

du, =k dug.
f?,m%‘ N N

Similarly reasoning for X(s) & &, shows that

du, <k du,.
f%%ﬁ, F1=8 g “H0

The final equality occurs because the critical regions were determined to obtain tests with size a.

APPENDIX 4
PROOF® OF THEOREM 3

Because the Brownian motions and Brownian bridges are independent, it is sufficient to show the
result of the two cases of a single Brownian motion and a single Brownian bridge.

The Radon-Nikodym derivatives for these two cases have similar structures but are fundamentally
different. For the Brownian motion the Radon-Nikodym derivative is between the measure induced
by a standard Brownian motion with drift and the measure induced by a standard Brownian motion
without drift. For the Brownian bridge the Radon-Nikodym derivative is between the measure
induced by a standard Brownian bridge with drift and the measure induced by a standard Brownian
bridge without drift. An important difference between these two situations is that the absolute

61 thank an anonymous referee for greatly simplifying this proof.
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continuity of the Brownian bridge measures requires the additional assumption that the drift for the
Brownian bridge takes value zero at time s = 1 (in the statement of the Theorem this is restriction 2
for the functions v;).

The univariate Brownian motion result is presented in Theorem 3.1 of Basawa and Rao (1980, p.
206).

It remains to show the Radon-Nikodym derivative between the measure induced by a standard
Brownian bridge with drift with respect to the measure induced by a standard Brownian bridge
without drift.

Let b°(s) be the solution to the stochastic differential equation

® b°(0) =0,

b°(s)

db°(s) = — _ ds+db(s), 0<s<l1.

In Karatzas and Shreve (1988, Section 5.6.B), it is shown that b°(s) is a Brownian bridge on [0, 1]. In
particular,

b°(1) = lim °(s) =0 ass.
st1
Now introduce a deterministic function »:[0,1] — R and its indefinite integral

7(t) = [0’ v(s)ds.

Define

bo(t) = b°(t) + 77°(1).
Which is the solution to the stochastic differential equation
7(s)  bs)
-5 A-9

Theorem 7.19 of Liptser and Shiryayev (1978) applied to the two diffusions (8) and (9) gives the
Radon-Nikodym derivative:

©9) db°(s) = v(s)ds +

+db(s), 0<s<l.

(10) { (— + v(s)) db°(s)
1 V4 b°(s) (7°(s)
-3k ( 1(5) +v(s)) g+ [' = « ( — +v(s))ds}.
Use Ito’s formula to write
b°(s)7 (s) 7(3) b°(s) b°(s)7°(s)
d db°(s )+ v(s)ds + ————ds,
1-s 1- -s 1-s)
SO
()7 (t) 7(s) , b°(s)  b°(s)7 (s)
1= —j(; 1= db(s)+j(;l_s V(S)ds+j(‘)wds
for all £+ [0,1). But,
b7 ()
lim —— =
11—t
S0
v 1 b° b°(s)7
! ( )db°( )+ [ () v(s)ds+flL(2S)ds=0.
1-s 0o (1-s)
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Substituting into (10) gives

d 7 2
d—”;—exp{[ u(s)db°(s)——f( (S)+v(s)) }

1
= exp{fo1 v(s)db°(s) — 3 /;1 (v())? dS}.

The final step follows by an integration by parts.

APPENDIX 5
EVALUATION OF THE TEST STATISTICS AND ASYMPTOTIC DISTRIBUTIONS

The calculation of a test statistic requires evaluating functionals of the form A(w)=
— 14 g(n, 7,5 M' dZ(s) applied to the stochastic processes generated by the moments calculated
from the data, i.e. where Z(s) is replaced by VT W}/2 F,;(6;). Let Ap(w) denote the required
functional where M is replaced with a consistent estlmate

Ay () = —j:g(n,ﬂ-,s)’MT WA/2 AT W 2F,p(67))

Z g(n,w, ) MWy f,(87)

Bt o)

This last form is computationally efficient to evaluate.
The other term needed to evaluate the test statistics is of the form

V(w) = j:[(folg(n,w,r)dr) —g(n,w,s)] M’M[(/:g('q,w,r)dr) —g(n,w,s)]ds.

To make this operational M needs to be replaced with a consistent estimate. A computationally
attractive form of this statistic is

— - 5 —_—2] A ~
7. () = tr{diag[gi(n,ﬂ',s)z G ]M’TWTMT}.
where diag[g;(n, w,5) - (g;(n, 7,5))*] is a diagonal matrix with element

2
flgi("?,ﬂ,S)z ds — (flg,-(n, ﬂ,s)ds)
0 (i

on its ith position on the major diagonal where g,(n, 7, s) is the ith element of g(n, 7, s).

These formulas facilitate the calculation of approximations to the asymptotic distributions under
the null and alternative hypotheses. For distributions under the null, set T large’ and replace
VT W}/ 2F,(6;) with a discrete approximation of

, Bk(S)
c [0]

7 For Table I in this paper T = 4000 was used. In AP T = 3600 was used.
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Because the Brownian motions do not contribute to the asymptotic distribution, they should not be

simulated. For the distribution under the alternative, again set 7' large and replace VT Wi/ 2F,1( éT)

with a discrete approximation of

B, (s) — CIA_lfs y(n,m,v)dv
0 .
0

Cl

m—k
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